Further results on the perfect state transfer in integral circulant graphs
نویسندگان
چکیده
For a given graph G, denote by A its adjacency matrix and F (t) = exp(iAt). We say that there exists a perfect state transfer (PST) in G if |F (τ)ab| = 1, for some vertices a, b and a positive real number τ . Such a property is very important for the modeling of quantum spin networks with nearest-neighbor couplings. We consider the existence of the perfect state transfer in integral circulant graphs (circulant graphs with integer eigenvalues). Some results on this topic have already been obtained by Saxena, Severini, Shparlinski [16], Bašić, Petković & Stevanović [4], and Basić & Petković [3]. In this paper, we show that there exists an integral circulant graph with n vertices having a perfect state transfer if and only if 4 | n. Several classes of integral circulant graphs have been found that have a perfect state transfer for the values of n divisible by 4. Moreover we prove the non-existence of PST for several other classes of integral circulant graphs whose order is divisible by 4. These classes cover the class of graphs where the divisor set contains exactly two elements. The obtained results partially answer the main question of which integral circulant graphs have a perfect state transfer. AMS Subj. Class.: 05C12, 05C50
منابع مشابه
Which weighted circulant networks have perfect state transfer?
The question of perfect state transfer existence in quantum spin networks based on weighted graphs has been recently presented by many authors. We give a simple condition for characterizing weighted circulant graphs allowing perfect state transfer in terms of their eigenvalues. This is done by extending the results about quantum periodicity existence in the networks obtained by Saxena, Severini...
متن کاملPerfect state transfer in integral circulant graphs
The existence of perfect state transfer in quantum spin networks based on integral circulant graphs has been considered recently by Saxena, Severini and Shparlinski. We give the simple condition for characterizing integral circulant graphs allowing the perfect state transfer in terms of its eigenvalues. Using that we complete the proof of results stated by Saxena, Severini and Shparlinski. More...
متن کاملSome classes of integral circulant graphs either allowing or not allowing perfect state transfer
The existence of perfect state transfer in quantum spin networks based on integral circulant graphs has been considered recently by Saxena, Severini and Shparlinski. Motivated by the mentioned work, Bašić, Petković and Stevanović give the simple condition for the characterization of integral circulant graphs allowing the perfect state transfer in terms of its eigenvalues. They stated that integ...
متن کاملPerfect state transfer, integral circulants, and join of graphs
We propose new families of graphs which exhibit quantum perfect state transfer. Our constructions are based on the join operator on graphs, its circulant generalizations, and the Cartesian product of graphs. We build upon the results of Bašić and Petković (Applied Mathematics Letters 22(10):1609-1615, 2009) and construct new integral circulants and regular graphs with perfect state transfer. Mo...
متن کاملPerfect state transfer in integral circulant graphs of non square-free order
This paper provides further results on the perfect state transfer in integral circulant graphs (ICG graphs). The non-existence of PST is proved for several classes of ICG graphs containing an isolated divisor d0, i.e. the divisor which is relatively prime to all other divisors from d ∈ D \ {d0}. The same result is obtained for classes of integral circulant graphs having the NSF property (i.e. e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 61 شماره
صفحات -
تاریخ انتشار 2011